top of page

DSL810

Special Topics in Design
Input Sensors

To understand sensors a little better, it made most sense to start right where we look at everyday, our mobile phones! I have a OnePlus 6, and went ahead to look at all the different sensors I could explore in it with the help of  the app "Sensor Box for Android"

This measured the tilt in my phone as I moved it along all the axes.

The ball helped visualise the acceleration in the motion of my phone.

This measured the decibels of noise around my phone.

This measured the magnetic field around my phone.

This measured the Lux level of the area infront of the front camera.

This measured the presence of any hinderance infront of my phone

This uses Earth's gravity to help determine orientation of my phone.

Add a sensor to a microcontroller board and read it. Document the process. Upload the arduino code. Find an application for it in the real world around you. 

Here I have used a GPS module to identify the location of person holding it. The readings of the GPS module are in the following format.

hope.jpg
hope.jpg
hope.jpg

The code used for this entire process was-

#include <TinyGPS++.h>
#include <SoftwareSerial.h>

static const int RXPin = 4, TXPin = 3;
static const uint32_t GPSBaud = 9600;

// The TinyGPS++ object
TinyGPSPlus gps;

// The serial connection to the GPS device
SoftwareSerial ss(RXPin, TXPin);

void setup(){
  Serial.begin(9600);
  ss.begin(GPSBaud);
}

void loop(){
  // This sketch displays information every time a new sentence is correctly encoded.
  while (ss.available() > 0){
    gps.encode(ss.read());
    if (gps.location.isUpdated()){
      // Latitude in degrees (double)
      Serial.print("Latitude= "); 
      Serial.print(gps.location.lat(), 6);      
      // Longitude in degrees (double)
      Serial.print(" Longitude= "); 
      Serial.println(gps.location.lng(), 6); 
       
      // Raw latitude in whole degrees
      Serial.print("Raw latitude = "); 
      Serial.print(gps.location.rawLat().negative ? "-" : "+");
      Serial.println(gps.location.rawLat().deg); 
      // ... and billionths (u16/u32)
      Serial.println(gps.location.rawLat().billionths);
      
      // Raw longitude in whole degrees
      Serial.print("Raw longitude = "); 
      Serial.print(gps.location.rawLng().negative ? "-" : "+");
      Serial.println(gps.location.rawLng().deg); 
      // ... and billionths (u16/u32)
      Serial.println(gps.location.rawLng().billionths);

      // Raw date in DDMMYY format (u32)
      Serial.print("Raw date DDMMYY = ");
      Serial.println(gps.date.value()); 

      // Year (2000+) (u16)
      Serial.print("Year = "); 
      Serial.println(gps.date.year()); 
      // Month (1-12) (u8)
      Serial.print("Month = "); 
      Serial.println(gps.date.month()); 
      // Day (1-31) (u8)
      Serial.print("Day = "); 
      Serial.println(gps.date.day()); 

      // Raw time in HHMMSSCC format (u32)
      Serial.print("Raw time in HHMMSSCC = "); 
      Serial.println(gps.time.value()); 

      // Hour (0-23) (u8)
      Serial.print("Hour = "); 
      Serial.println(gps.time.hour()); 
      // Minute (0-59) (u8)
      Serial.print("Minute = "); 
      Serial.println(gps.time.minute()); 
      // Second (0-59) (u8)
      Serial.print("Second = "); 
      Serial.println(gps.time.second()); 
      // 100ths of a second (0-99) (u8)
      Serial.print("Centisecond = "); 
      Serial.println(gps.time.centisecond()); 

      // Raw speed in 100ths of a knot (i32)
      Serial.print("Raw speed in 100ths/knot = ");
      Serial.println(gps.speed.value()); 
      // Speed in knots (double)
      Serial.print("Speed in knots/h = ");
      Serial.println(gps.speed.knots()); 
      // Speed in miles per hour (double)
      Serial.print("Speed in miles/h = ");
      Serial.println(gps.speed.mph()); 
      // Speed in meters per second (double)
      Serial.print("Speed in m/s = ");
      Serial.println(gps.speed.mps()); 
      // Speed in kilometers per hour (double)
      Serial.print("Speed in km/h = "); 
      Serial.println(gps.speed.kmph()); 

      // Raw course in 100ths of a degree (i32)
      Serial.print("Raw course in degrees = "); 
      Serial.println(gps.course.value()); 
      // Course in degrees (double)
      Serial.print("Course in degrees = "); 
      Serial.println(gps.course.deg()); 

      // Raw altitude in centimeters (i32)
      Serial.print("Raw altitude in centimeters = "); 
      Serial.println(gps.altitude.value()); 
      // Altitude in meters (double)
      Serial.print("Altitude in meters = "); 
      Serial.println(gps.altitude.meters()); 
      // Altitude in miles (double)
      Serial.print("Altitude in miles = "); 
      Serial.println(gps.altitude.miles()); 
      // Altitude in kilometers (double)
      Serial.print("Altitude in kilometers = "); 
      Serial.println(gps.altitude.kilometers()); 
      // Altitude in feet (double)
      Serial.print("Altitude in feet = "); 
      Serial.println(gps.altitude.feet()); 

      // Number of satellites in use (u32)
      Serial.print("Number os satellites in use = "); 
      Serial.println(gps.satellites.value()); 

      // Horizontal Dim. of Precision (100ths-i32)
      Serial.print("HDOP = "); 
      Serial.println(gps.hdop.value()); 
    }
  }
}

From The Datasheet-

The NEO-6 module is a GPS receiver with a high performance positioning engine. It is flexible and cost effective and offers many connectivity options. It is ideal for battery operated mobile devices with very strict cost and space constraints.

​

It has a 5Hz Navigational update rate and a horizontal accuracy upto 1m which is quite sufficient for most purposes like locating an object or wayfinding.

​

It needs an ideal of 3.3V power supply.

bottom of page